Associatively Segmenting Instances and Semantics in Point Clouds

Associatively Segmenting Instances and Semantics in Point Clouds

  • Authors:Xinlong Wang / Chunhua Shen / Jiaya Jia
  • Abstract
    • real scene / precisely and intuitively / diversified elements / informative 3D scene
    • instance segmentation benefit from semantic segmentation through learning semantic-aware point-level instance embedding
    • semantic features of the points belonging to the same instances are fused together to make more accurate per-point
    • http://github.com/WXinlong/ASIS
  • 1.Introduction
    • be parsed to / panoptic segmentation / raw point / step-wise paradigm / sub-optimal and inefficient / tailor
    • The former one distinguishes different instances of the same class clearly, while the latter one wants them to have the same label.
    • two sub-optimal approachs: (1) 获取语义分割的结果,在每个语义分割获取的类上进行实例分割 (2) 获取实例分割的结果,并对实例分割结果进行识别,确认不同的实例应该属于哪一类
    • ASIS (Associatively Segmenting Instances and Semantica)
  • 2.Related Work
    • Instance Segmentation
      • inspired by R-CNN, segment instances by proposing segment candidates
      • based on bounding box proposals
      • Mask R-CNN
      • using the learned associative embedding
      • discriminative loss function which enables to learn the pixel-level instance embedding efficiently
      • sub-grouping problems
      • similarity matrix of a point cloud SGPN
    • Semantic Segementation
      • 3D-FCNN
      • Pointnet
      • SPG
    • Deep Learning on Point Clouds
      • multiview rendering images part of contextual information in point cloud is left behind during the projection process
      • volumetric representations both computationally and memory intensive due to the sparsity of point clouds and the heavy computation of 3D convolutions
      • raw point PointNet/PointNet++/RSNet/DGCNN/PointCNN
  • 3.Our Method
    • 3.1.A Simple Baseline
      • a shaed encoder two parallel decoders
      • Point cloud —>feature encoder—>feature matrix N_P—>
        • semantic segmentation—>decode the feature martix to N_PN_F—>feature matrix F_SEM—>semantic predictions P_SEM N_PN_C
        • instance segmentation—>decode the feature martix to N_PN_F—>feature matrix F_INS—>predict per-point instance embedding E_INS N_PN_E
        • Loss Function is tailored from [6]
    • 3.2.Mutual Aid
      • Semantic-aware Instance Segmentation
        • F_SINS = F_INS + FC(F_SEM)
        • 将突出的语义特征加入到实例分割的特征矩阵中,使得矩阵对图像的语义特征敏感
      • Instance-fused Semantic Segmentation
        • K nearest neighbor
        • channel-wise max aggregation
        • 利用K近邻算法,将原始数据中对不同类的隶属关系(亲切程度)通过N_P*K表现出来,然后跟语义分割数据放在一起形成三维特征空间,并根据信道最大聚合,将三维特征空间中的最大隶属度提取出来,进行语义分割。
  • 4.Experiments
    • 4.1.Experiment Settings
      • Darasets
        • S3DIS
          • 9-dim feature vector XYZ,RGB,normalized coordinates as to the room
          • 6 areas 272 room 13 categories
          • 3D scans Matterport Scanners
        • ShapeNet
          • 3-dim XYZ
          • 16881 16 categories
          • 3D shapes from 16 categories
      • Evaluation Metrics
        • Semantic segmentation
          • over-all accuracy OACC
          • mean accurac mACC
          • mean IoU mIoU
        • Instance segmentation
          • CoV
          • WcoV
          • mean precision mPrec
          • mean recall mRec
        • Training and Inference Details
          • vanilla
          • RePr
    • 4.2.S3DIS Results
      • 4.2.1.Baseline Method
        • efffective and efficient
      • 4.2.2.ASIS
        • the impact of the ASIS on evaluation metrics are analysised
      • 4.2.3.Analsis
        • Ablative Analysis
        • Category-based Analysis
      • 4.2.4.Qualitative Results
      • 4.2.5.Computation Time
    • 4.3.ShapeNet Results
  • 5.Conclusion
    • hoping the novel design provides insights to future works on segmentation tasks panoptic segmentation and beyondRe
  • References
    • [6] Semantic instance segmentation with a discriminative loss function